An Intelligent Energy Efficient Clustering in Wireless Sensor Networks

نویسنده

  • Abdolhossein Sarrafzadeh
چکیده

One of the main challenges of wireless sensor network is how to improve its life time. The limited energy of nodes is the main obstacle. We may overcome this problem by optimizing the nodes' power consumption. A solution is clustering, but optimum clustering of wireless sensor network is an NP-Hard problem. This paper proposes a hybrid algorithm based on Genetic Algorithm and Particle Swarm Optimization to overcome this clustering problem by finding the number of clusters, the cluster heads and the clusters members. Simulation results reveal that this algorithm outperforms LEACH and Genetic Algorithm based clustering scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks

Wireless sensor networks (WSNs) consist of sensor nodes with limited energy. Energy efficiency is an important issue in WSNs as the sensor nodes are deployed in rugged and non-care areas and consume a lot of energy to send data to the central station or sink if they want to communicate directly with the sink. Recently, the IEEE 802.15.4 protocol is employed as a low-power, low-cost, and low rat...

متن کامل

Hybrid Bio-Inspired Clustering Algorithm for Energy Efficient Wireless Sensor Networks

In order to achieve the sensing, communication and processing tasks of Wireless Sensor Networks, an energy-efficient routing protocol is required to manage the dissipated energy of the network and to minimalize the traffic and the overhead during the data transmission stages. Clustering is the most common technique to balance energy consumption amongst all sensor nodes throughout the network. I...

متن کامل

An Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems

An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...

متن کامل

Improving Energy Consumption by Using Cluster Based Routing Algorithm in Wireless Sensor Networks

Multi-path is favorite alternative for sensor networks, as it provides an easy mechanism to distributetraffic, as well as considerate fault tolerance. In this paper, a new clustering based multi path routingprotocol namely ECRR (Energy efficient Cluster based Routing algorithm for improving Reliability) isproposed, which is a new routing algorithm and guarantees the achievement to required QoS ...

متن کامل

A New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption

Clustering is an effective approach for managing nodes in Wireless Sensor Network (WSN). A new method of clustering mechanism with using Binary Gravitational Search Algorithm (BGSA) in WSN, is proposed in this paper to improve the energy consumption of the sensor nodes. Reducing the energy consumption of sensors in WSNs is the objective of this paper that is through selecting the sub optimum se...

متن کامل

MLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks

Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011